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Melioidosis is caused by the environmental bac-
terium Burkholderia pseudomallei. Infections are 

acquired by direct contact with the pathogen, most 
commonly through traumatic inoculation with con-
taminated soil or water but also by ingestion or inhala-
tion. Symptoms are nonspecific and can include pneu-
monia, skin lesions, abscess formation, and sepsis (1).

In Latin America, melioidosis is believed to be 
underdiagnosed because of the absence of reliable 
surveillance and the lack of available diagnostic tools 
and methods (2). Colombia has previously reported 
cases as sporadic, isolated events in a few geographic 
areas (2,3). The aim of this study was to genetically 
characterize isolates of B. pseudomallei recovered from 
clinical specimens in different departments of Colom-
bia (4). (A department in Colombia is a geographic 
unit composed of municipalities led by a governor.) 
The goal was to better understand genetic relation-
ships among the isolates from Colombia, as well as 
their relationships to isolates from other tropical and 
subtropical regions of the Americas. The study was 
internally reviewed at the US Centers for Disease 
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We report an analysis of the genomic diversity of isolates 
of Burkholderia pseudomallei, the cause of melioidosis, 
recovered in Colombia from routine surveillance during 
2016–2017. B. pseudomallei appears genetically di-
verse, suggesting it is well established and has spread 
across the region.



Control and Prevention (Atlanta, GA, USA) and de-
termined not to involve human subject research.

Melioidosis is not an officially reportable disease 
in Colombia, but when cases are identified, depart-
ment public health laboratories are required to send 
isolates of B. pseudomallei to the Instituto Nacional 
de Salud. During 2016–2017, a total of 11 isolates of 
B. pseudomallei were recovered from 10 melioidosis 
patients in the departments of Cesar (n = 4 isolates), 
Antioquia (n = 4), Casanare (n = 2), and Santander 
(n = 1) (Appendix, https://wwwnc.cdc.gov/EID/
article/27/2/20-2824-App1.pdf). The most common 
risk factor was diabetes mellitus (n = 6); 4 of the pa-
tients died (Table). Cesar, Antioquia, Casanare, and 
Santander vary in population from a few hundred 
thousand to >6 million (4).

We performed whole-genome sequencing of the 
11 isolates and deposited sequences at the National 
Center for Biotechnology Information under BioPro-
ject PRJNA638548. Sequences were used for multilo-
cus sequence typing and single-nucleotide polymor-
phism (SNP) analysis (Appendix). The multilocus 
sequence types (ST) we observed were ones previous-
ly described, such as ST92, ST349, ST518, and ST1459. 
Two novel STs from this study were designated 
ST463 and ST1701. Previous entries in the PubMLST 
database (http://pubmlst.org) indicate that ST92 has 
been identified in cases associated with Puerto Rico 
and Brazil and in 1 person in Switzerland who had 
travelled to Martinique. ST349 was represented in 
2 examples, one from Martinique and the other in a 
person from Spain who had travelled to West Africa; 
ST518 is represented in 4 examples. The first was in a 
person from Arizona, USA, in whom melioidosis de-
veloped after sustaining an injury while swimming 
in Costa Rica (5). In addition, ST518 was identified 
in B. pseudomallei isolates from 3 pet green iguanas, 

2 of them in California, USA, and 1 in Belgium, all 
of which were presumably imported from Central or 
South America (6,7). ST1459 was noted in 1 isolate 
from Brazil.

SNP analysis determined from the whole genome 
sequences indicates that the Colombia isolates (N=11) 
are within the clade associated with Western Hemi-
sphere B. pseudomallei based on a comparison with a 
panel of reference genomes (N=45) (Figure). Within 
this clade, a subgroup was resolved containing the 
Colombia genomes along with ones from Brazil and 
Guatemala. Also included is a genome from an isolate 
from a patient who had traveled to both Panama and 
Peru, as well as isolates from iguanas from California 
and Belgium, as noted, plus 1 from the Czech Repub-
lic that were presumably imported from Central or 
South America (Figure) (6–8).

The full panel (N = 56) was also used for quan-
tifying SNP differences among the genomes. Patient 
isolates B107 and B108 had no SNPs between them, 
even though they were from different patients, sug-
gesting a common source of infection or a clonal pop-
ulation of B. pseudomallei present in different sources. 
However, isolates B308 and B309 were from the same 
patient and had 1 SNP between them. The next clos-
est relationship was for B199 (from Casanare), which 
diverged by 38 SNPs from B308 and by 39 SNPs from 
B309 (from Antioquia). The phylogenetic SNP tree 
indicates that isolates from Antioquia, Casanare, and 
Cesar for the most part do not uniformly group to-
gether by department. The largest divergence was 
seen between B109 and the genomes for B107 and 
B108, with >6,900 SNPs detected (all from Cesar). The 
amount of divergence plus the lack of grouping by 
department, even though we presume that patients’ 
main exposures would have been within a given de-
partment, suggests B. pseudomallei is well established 
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Table. Epidemiologic and demographic characteristics of 10 melioidosis patients, Colombia 

Isolate 
Sequence 

type Department 
Age, 
y/sex Type of sample Diagnosis 

Medical history and risk 
factors Outcome 

B107 1459 Cesar 71/M Blood Sepsis Arterial hypertension Died 
B108 1459 Cesar 54/M Right leg injury Soft tissue infection Tibial fracture Recovered 
B109 349 Cesar 56/M Urine Urinary infection Diabetes mellitus Recovered 
B197 1463 Cesar 51/F Bronchoalveolar 

lavage 
Pulmonary melioidosis Diabetes mellitus, anemic 

syndrome 
Recovered 

B198 1701 Casanare 24/M Blood Pneumonia None Died 
B199 518 Casanare 26/M Blood Unspecified sepsis None Died 
B255 92 Santander 68/M Blood Sepsis  Recovered 
B308* 518 Antioquia 64/M Tracheal aspirate Systemic inflammatory 

response syndrome 
Diabetes mellitus Died 

B309*    Blood    
B310 1740 Antioquia 81/F Tracheal aspirate Pneumonia Kidney tumor (in studio), 

diabetes mellitus, arterial 
hypertension, hypothyroidism 

Recovered 

B411 1741 Antioquia 53/F Blood Sepsis Diabetes mellitus Recovered 
*Isolates from the same patient. 

 



in Colombia and has had time to diverge substan-
tially since its introduction. In addition, the genomes 
from the 2 cases of melioidosis from pet iguanas from 
California and the 1 from Belgium cluster together 
with examples from Colombia, suggesting this region 
or a nearby region may have been the origin of the 
iguanas. Further studies, especially to recover and 
test environmental isolates, will improve our under-
standing of the population structure of B. pseudomallei 
in Colombia and improve the ability of public health 
stakeholders to respond to cases of melioidosis.
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Figure. Dendrogram used for characterization of Burkholderia 
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Isolates from Colombia also include the department where they 
originated. Scale bar indicates number of substitutions per single 
nucleotide polymorphism.
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Puumala orthohantavirus (PUUV), a species of 
the genus Orthohantavirus within the Hantaviri-

dae family, is an enveloped single-strand negative-
sense RNA virus (1). The case-fatality ratio of Old 

World hantaviruses ranges from 1%–10% for Do-
brava-Belgrade and Hantaan orthohantaviruses to 
<1% for PUUV. Infection is transmitted by direct 
inhalation of virion-containing aerosols from ro-
dent urine and feces. PUUV causes nephropathia 
epidemica, a limited form of hemorrhagic fever 
with renal syndrome (1). In Russia, 6,000–8,000 
cases of hemorrhagic fever with renal syndrome 
are reported annually. Most cases occur in Western 
Russia and are caused by PUUV and Dobrava-Bel-
grade orthohantaviruses (2).

Asthenia, fever, chills, diffuse myalgia, and lum-
bar pain developed in a man 45 years of age 4 days 
after he returned to Switzerland from Samara, his 
hometown in central Russia (Appendix, https://
wwwnc.cdc.gov/EID/article/27/2/20-3770-App1.
pdf). Four days later, he sought treatment at the Ge-
neva University Hospitals (Geneva, Switzerland) for 
septic shock with disseminated intravascular coagu-
lation and kidney and liver failure. He had severe 
thrombocytopenia and elevated levels of C-reactive 
protein, procalcitonin, and leukocytes (Appendix Ta-
ble 2). We transferred him to the intensive care unit 
for mechanical ventilation and hemodynamic sup-
port because of severe metabolic acidosis and confu-
sion. We began treatment with broad-spectrum anti-
microbial drugs, including doxycycline for possible 
leptospirosis. The day after admission, the patient 
tested positive for PUUV by real-time reverse tran-
scription PCR (3) with a cycle threshold of 28. His se-
rum sample tested positive for IgM and IgG against 
hantaviruses (Appendix Table 1). Shortly after his 
diagnosis, we administered 2 doses of 30 mg subcu-
taneous icatibant 6 hours apart. The patient died of 
multiple organ failure <60 hours after admission.

The next day, fever, lymphopenia, moderate 
thrombocytopenia, and hepatitis developed in the in-
dex patient’s daughter, who was 12 years of age (Ap-
pendix). She was hospitalized and tested positive for 
PUUV by PCR with a cycle threshold of 26. We pre-
scribed a 5-day course of oral ribavirin starting with 
an initial dose of 30 mg/kg followed by 15 mg/kg 
every 6 hours (4). The viral load in plasma rapidly 
decreased. We did not detect viral RNA in urine (Ap-
pendix Table 3). Interstitial nephropathy briefly de-
veloped and subsided; she was discharged without 
sequelae after 7 days.

The wife of the index patient had had influenza-
like symptoms in Russia during the week before her 
husband’s illness. Her serum sample tested positive 
for IgM and IgG against hantaviruses. We used a 
pseudovirus-based neutralization assay to confirm 
serologic results (Appendix Figure 1).
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We report 3 cases of Puumala virus infection in a family 
in Switzerland in January 2019. Clinical manifestations 
of the infection ranged from mild influenza-like illness to 
fatal disease. This cluster illustrates the wide range of 
clinical manifestations of Old World hantavirus infections 
and the challenge of diagnosing travel-related hemor-
rhagic fevers.
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Appendix 

Materials and Methods 

Through laboratory-based surveillance activities, 11 Burkholderia pseudomallei 

isolates were received by the microbiology group of the Instituto Nacional de Salud in 

Colombia during 2016–2017. Cultures from blood, sputum, urine, abscesses, and throat 

swabs generated as part of routine diagnostic procedures were processed according to the 

protocols of the clinical laboratory of each hospital. We performed preliminary 

identification of isolates and susceptibility tests using a VITEK 2 (Biomerieux, 

https://www.biomerieux-usa.com). Isolates that we identified as Burkholderia spp., oxidase 

positive, gram-negative, and non-Pseudomonas aeruginosa bacteria, were further tested by 

MALDI-TOF MS (Bruker, https://www.bruker.com) (1). 

Six isolates presumptively identified as B. pseudomallei or Burkholderia spp. were 

sent to the U.S. Centers for Disease Control and Prevention (CDC) for confirmatory 

testing, whole genome sequencing, and genetic analysis. DNA from an additional 5 B. 

pseudomallei isolates were also sent to CDC for sequencing and genetic analysis. Colombia 

has previously reported 20 cases as sporadic, isolated events in a few geographic areas. The 

departments with melioidosis cases from this study are noted on the map in the Appendix 

Figure. Accounts of previous cases of melioidosis in Colombia, including maps, have been 

published elsewhere (2–10). 

We extracted DNA using the Maxwell RSC Cultured Cells DNA kit on the 

Promega Maxwell RSC Instrument per the manufacturer’s instructions 

(https://www.promega.com) or extracted it using a QIAGEN DNeasy Blood & tissue kit 

(https://www.qiagen.com) from pure overnight culture, according to the manufacturer’s 

instructions. We quantified DNA concentration and spectrum ratios using a ThermoFisher 

https://doi.org/10.3201/eid2702.202824
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Qubit v4.0 fluorometer (https://www.thermofisher.com). We eluted samples in PCR-grade 

water and RNase A, filtered through a 0.1 µm filter, and checked for sterility before whole 

genome sequencing (11).  

We determined isolate sequences from paired-end Illumina reads which were 

generated on an Illumina MiSeq or iSeq 100 (https://www.illumina.com). We sheared 

genomic DNA to a mean size of 600 bp using a Covaris LE220 focused ultrasonicator 

(https://www.covaris.com). We cleaned DNA fragments with a Beckman Coulter Ampure 

system (https://www.beckmancoulter.com) and used them to prepare dual-indexed 

sequencing libraries using NEBNext Ultra library prep reagents (New England Biolabs, 

https://www.neb.com) and barcoding indices synthesized in the CDC Biotechnology Core 

Facility for the genomes run on the MiSeq. Libraries were analyzed for size and 

concentration, pooled, and denatured for loading onto the flow cell for cluster generation. 

We used 2 × 250 bp cycle paired-end sequencing kits to perform sequencing for the 

Illumina MiSeq. We used a Nextera Flex kit (Illumina) to produce libraries for the iSeq 100 

runs, which we performed using 2 × 150 bp cycle paired-end sequencing kits. On 

completion, sequence reads were filtered for read quality, base called, and demultiplexed 

using bcl2fastq, version 2.19 (Illumina). We generated assemblies as previously described 

and assessed them with QUAST v5.0 (https://github.com; 12,13). Features of the genome 

assemblies are noted in Appendix Table 1.  

We submitted genomes to the B. pseudomallei MLST website 

(http://pubmlst.org/bpseudomallei) to identify the sequence types or assign new sequence 

type identifiers, as needed (14,15). We analyzed core SNPs for the genomes from Colombia 

using Parsnp in the Harvest 1.3 suite (https://github.com) along with a reference panel 

previously described, plus genomes associated with the Western Hemisphere that have 

recently become available (11,16–19). The Colombian genomes had an average of 3,822 

SNPs in nonprotein-encoding (intergenic) positions compared with K96243; 2.1 × more 

SNPs were observed in genes that had no predicted amino acid changes (Appendix Table 

2). The dendrogram was generated in MEGA 7 (https://www.megasoftware.net) (20). SNP 

effects of the Colombian isolates compared with the K96243 reference strain were 

predicted with SnpEff v4.3t (https://github.com; 21). 
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Appendix Table 1. General features of Colombian genome assemblies. 
Sample Contigs* Total length (bp) Largest contig, bp GC, %† N50‡ L50§ 
B107 289 7,125,249 137,454 68.08 43,818 53 
B108 463 7,106,012 99,738 68.04 28,313 76 
B109 444 7,134,078 134,685 68.06 31,337 68 
B196 585 7,226,750 108,429 67.76 24,102 87 
B197 466 7,204,391 117,090 68.01 28,036 78 
B198 394 7,008,319 120,168 68.22 34,483 62 
B199 259 7,040,139 292,250 68.25 51,517 39 
B255 536 7,204,800 98,505 67.97 27,345 81 
B308 311 7,016,254 170,164 68.24 44,603 49 
B309 296 7,018,475 195,367 68.25 48,879 44 
B310 321 7,086,990 152,984 68.14 40,384 52 
B411 357 7,026,297 126,891 68.19 40,276 55 
*No. of contiguous sequences assembled from short raw Illumina sequences 
†Percentage of a genome assembly containing Guanine and Cytosine nucleotides 
‡Length of the smallest contig, which together with larger contigs comprise half of the total assembly size 
§Smallest contig quantity to make up 50% of the total assembly size 

 
 
Appendix Table 2. Predicted mutation consequences of SNPs observed in the Colombian isolates compared with the 
reference strain K96243 (GCA 000959285.1). 
Sample Synonymous Missense Intergenic Noncanonical start codon Start codon lost Stop codon gained Stop codon lost 
B107 7920 9400 3799 15 33 307 0 
B108 7957 9386 3872 15 29 302 0 
B109 7935 9307 3807 12 31 307 0 
B196 7982 9445 3898 14 35 319 0 
B197 7929 9415 3759 15 32 289 0 
B198 7993 9376 3860 16 29 312 0 
B199 7872 9271 3687 12 33 314 0 
B255 7924 9387 3796 15 33 307 0 
B308 7908 9373 3833 15 33 306 0 
B309 7990 9386 3873 13 30 310 0 
B310 7920 9400 3801 15 33 307 0 
B411 7984 9518 3873 13 30 310 0 

 
 

 

https://pubmed.ncbi.nlm.nih.gov/27004904/
https://doi.org/10.1093/molbev/msw054
https://pubmed.ncbi.nlm.nih.gov/22728672/
https://doi.org/10.4161/fly.19695


 

Page 6 of 6 

 

Appendix Figure. Map of Colombia showing number of melioidosis cases by department. 


